Extremal subgraphs of random graphs

نویسندگان

  • Graham R. Brightwell
  • Konstantinos Panagiotou
  • Angelika Steger
چکیده

Let K` denote the complete graph on ` vertices. We prove that there is a constant c = c(`), such that whenever p ≥ n−c, with probability tending to 1 when n goes to infinity, every maximum K`-free subgraph of the binomial random graph Gn,p is (`− 1)partite. This answers a question of Babai, Simonovits and Spencer [BSS90]. The proof is based on a tool of independent interest: we show, for instance, that the maximum cut of almost all graphs with M edges, where M n, is nearly unique. More precisely, given a maximum cut C of Gn,M , we can obtain all maximum cuts by moving at most O( √ n3/M) vertices between the parts of C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the K LR conjecture in random graphs

The K LR conjecture of Kohayakawa, Luczak, and Rödl is a statement that allows one to prove that asymptotically almost surely all subgraphs of the random graph Gn,p, for sufficiently large p := p(n), satisfy an embedding lemma which complements the sparse regularity lemma of Kohayakawa and Rödl. We prove a variant of this conjecture which is sufficient for most known applications to random grap...

متن کامل

Blow-Up Lemma

The Regularity Lemma [16] is a powerful tool in Graph Theory and its applications. It basically says that every graph can be well approximated by the union of a constant number of random-looking bipartite graphs called regular pairs (see the definitions below). These bipartite graphs share many local properties with random bipartite graphs, e.g. most degrees are about the same, most pairs of ve...

متن کامل

A Disproof of a Conjecture of Erdos in Ramsey Theory

Denote by kt(G) the number of complete subgraphs of order f in the graph G. Let where G denotes the complement of G and \G\ the number of vertices. A well-known conjecture of Erdos, related to Ramsey's theorem, is that Mmn^K ct(ri) = 2 ~*. This latter number is the proportion of monochromatic Kt's in a random colouring of Kn. We present counterexamples to this conjecture and discuss properties ...

متن کامل

Extremal results in sparse pseudorandom graphs

Szemerédi’s regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and Rödl proved an analogue of Szemerédi’s regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemerédi’s regularity lemma us...

متن کامل

Large Subgraphs without Short Cycles

We study two extremal problems about subgraphs excluding a family F of graphs. i) Among all graphs with m edges, what is the smallest size f(m,F) of a largest F–free subgraph? ii) Among all graphs with minimum degree δ and maximum degree ∆, what is the smallest minimum degree h(δ,∆,F) of a spanning F– free subgraph with largest minimum degree? These questions are easy to answer for families not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2012